
Journal of Statistical Physics, Vol. 61, Nos. 3/4, 1990 

Nucleation near the Spinodal in 
Long-Range Ising Models 
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Properties of metastable long-range Ising models (LRIMs) are studied for deep 
quenches near the mean-field spinodal with Monte Carlo simulations using 
Glauber dynamics. The theory of spinodal-assisted nucleation is found to agree 
well with the data. Nucleating droplets are shown to have the same structure as 
large clusters in random long-range bond percolation. 
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1. I N T R O D U C T I O N  

The classical theory of nucleation is based on phenomenological  models 
where it is generally assumed that  nucleating droplets are local fluctuations 
of the stable phase. (1) The droplets are compact  objects with a well-defined 
surface and volume. The results of classical nucleation theory are consistent 
with the behavior  of  many  experimental systems and with simulations of 
metastable nearest-neighbor Ising models )  1 4) The work of Langer,(5) based 
on a quasiequilibrium treatment  of the ferromagnetic metastable Ising 
model, provides more  of a "first principles" justification for the assump- 
tions of  classical nucleation theory. It is shown that  these assumptions hold 
near the condensat ion point  for temperatures well below the critical 
value Tc. 

Several years ago, this work was extended to long-range Ising models 
(LRIMs)  with large values of the external field H which put the system 
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near the spinodal. (6'7~ In mean-field approximations, the spinodal is the 
sharp boundary dividing the metastable and unstable regimes. ~ Increasing 
the range of interaction between spins makes it possible to quench the 
system arbitrarily close to the spinodal. (s) Many features of the metastable 
state were found to be radically different. For example, the nucleating 
droplet was discovered to be a critical fluctuation whose linear size is given 
by the correlation length. The correlation length diverges at the spinodal in 
a manner analogous to the behavior at the critical point. Also, the struc- 
ture of the nucleating droplet is quite different than that assumed in classi- 
cal nucleation theory. Rather than a fluctuation of the stable phase, the 
spinodal-assisted nucleating droplet is ramified and fractal-like. Additional 
work showed that there is a smooth transition between the classical 
droplets of Langer and those near the spinodal. (9) This is expected since the 
same formalism underlies both results. We will refer to this new type of 
nucleation as spinodal-assisted nucleation. 

Since the completion of the theoretical work, (6 9) there have been 
several reports of computer simulations which confirm many of the 
qualitative features of spinodal-assisted nucleation in LRIMs. Heer- 
mann etal. studied nucleation in 3-dimensional LRIMs using Glauber 
dynamics (model A). (1~ Near the spinodal, the nucleating droplets were 
found to be ramified objects. Furthermore, the initial growth of the 
droplets was observed to take place throughout their interior as predicted 
by spinodal-assisted nucleation theory. This result is much different than 
the behavior of classical droplets, which initially grow on their surface. 

Another result of Heermann et al. (m) concerned the behavior of the 
quasistatic susceptibility; i.e., the measured fluctuations in the bulk 
magnetization while the system remains metastable. A marked increase in 
this quantity was observed as the spinodal was approached. This is consis- 
tent with the theory, which predicts a divergence in the quasistatic suscep- 
tibility at the spinodal. 

Simulations of 2-dimensional LRIMs using Creutz dynamics 
(model C) were reported by Monette et aL (m In this work the qualitative 
features of the nucleating droplet observed by Heerman et al. were con- 
firmed, showing that these aspects of spinodal-assisted nucleation are 
independent of dynamics (i.e., quasiequilibrium). In addition, the radius of 
gyration of the nucleating droplets was seen to approach the calculated 
value of the correlation length, ~ = R(A T) -  1/2, as the system was initialized 
closer to the spinodal. Here A T =  ( T , - T ) / T , ,  where T, is the temperature 
at the spinodal line, and R is the range of interaction between spins. 

As of this paper, the theory of spinodal-assisted nucleation is 
reasonably supported by the Monte Carlo simulation data. There are, 
however, two major issues which remain unresolved. First, although the 



Nucleation near the Spinodal in LRIMs 893 

theory is based on a second-order singularity at the spinodal, no 
measurements of mean-field exponents have been reported from LRIM 
simulation data. Second, even though the nucleating droplets are proposed 
to be fractal objects, their fractal dimension and other scaling properties 
are not completely understood and have not been measured. 

The present work addresses these two points. Section2 contains a 
description of the computational methods and of the system used in the 
simulations. In Section 3 the nature of the quasistatic susceptibility 
divergence observed by Heermann et al. (1~ is investigated. The behavior of 
metastable LRIMs appears to approach that of a Curie-Weiss (mean-field) 
system. The mean cluster size of the appropriate clusters of spins is also 
measured. Section 4 focuses on the properties of the nucleating droplets. 
Data for the correlation length exponent are shown and compared with 
spinodal-assisted nucleation theory. In addition, data for the mass of the 
nucleating droplets as a function of the external field are presented. The 
droplets appear to have a structure which obeys the same scaling proper- 
ties as clusters the size of the connectedness length in long-range bond 
percolation. (12) 

2. M E T H O D S  A N D  B A C K G R O U N D  

The system used in the simulations is a long-range Ising model 
(LRIM) in two dimensions. Each spin interacts with all of its neighbors 
ferromagnetically and with equal strength. The coupling constant is 
J=Jo/q ,  where q is the coordination number. The coupling constant is 
always positive, so that the system is ferromagnetic. The Hamiltonian for 
this system is 

= -J  Z s sj- H Z s, ( 2 . 1 )  
i , j  i 

Here the first sum is over all pairs of neighboring spins. The second term 
is due to the coupling of the spins to a constant external field H. The coor- 
dination number of the lattice is variable. In the klimit where q -* oo we 
expect the system to exhibit mean-field behavior. 

The set of spins which interact with a single spin si is called the 
neighborhood of si. The neighborhood of s~ is bounded by a square box 
whose sides are parallel to the x and y axes of the lattice. The length of the 
box is set to 2R + 1, where R is an integer called the range of  interaction. 
The coordination number is related to R through the equation 

q =  ( 2 R +  1) 2 -  1 (2.2) 
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For example, when R = 1, each spin interacts with its nearest and next- 
nearest neighbors and q = 8 (since the system is in d =  2). 

Glauber dynamics (nonconserved order parameter) was used in the 
LRIM simulations. The specific method chosen was the well-known 
Glauber-Metropolis (or heat-bath) algorithm. (13~ In this algorithm, the 
probability to flip a spin si is computed from the following expression: 

exp{ - fl(J(Z; sj) si + Hsi) } 
Pflip - exp { - f l (J(Zj sj) s i + Hsi) } + exp { + fl(J(~y sj) s~ + Hsi) } 

(2.3) 

Here each sum Zj  is over all of the spins sj within the interaction range R 
of si. A random number between zero and one is sampled from a uniform 
distribution. If the random number is smaller than Pnip, the spin is flipped. 
Otherwise the spin remains unchanged. The time is measured in Monte 
Carlo steps per spin. One time step is equivalent to applying the above 
process to every spin in the system. The order in which the spins are visited 
is random. All systems had a linear size L =  150. They were run on an 
IBM 3090 at Boston University. 

Initially the spins are configured so that they are antiparallel to the 
external magnetic field. The temperature is then set to ]To. The system is 
allowed to evolve under the heat-bath dynamics. Typically, the evolution of 
the metastable LRIM consists of three stages. First, the system relaxes to 
quasistatic equilibrium. This usually takes only a few Monte Carlo steps. 
Then the system remains metastable for an amount of time which depends 
on the value of the nucleation barrier (i.e., the free energy necessary to form 
a nucleating droplet in the metastable background). Finally, a nucleating 
droplet forms and the system decays to equilibrium by means of the growth 
of the droplet. If the external field is too large, the system will decay to 
equilibrium without initially relaxing to a metastable state, 

The structure of the nucleating droplet is of principal interest. The 
long-range potential makes it nontrivial to define the nucleating droplet. 
Fortunately, it is possible to identify the droplets by exploiting a mapping 
between the metastable system and a correlated long-range bond percola- 
tion problem. (6) The critical point in the percolation problem coincides 
with the spinodal. Furthermore, the connectedness length scales with the 
Ising correlation length. The percolation problem is defined as follows: 
After every Monte Carlo step the up spins (i.e., those aligned with H) are 
considered to be percolation sites. The sites which are neighbors in the 
LRIM problem are connected by bonds with probability 

p = 1 - e  -4J/~(I- p~/ (2.4) 

Here Ps is the density of spins aligned with the field at the spinodal line. 
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In the limit of large coordination number (i.e., small J), one can show 
from Eq. (2.4) and the fact that the density of sites scales (1~ as ( P s - P )  
(AH) ~/2 that 

Z/p ~ (z/H) 1/2 (2.5) 

Here Ap = ( P c -  P)/Pc, with Pc being the critical probability for bond per- 
colation when the density of sites is equal to p~.. Also, Z/H= (H s -  H)/H, ,  
where H s is the value of the external field at the spinodal. This scaling 
relation links the singular behavior of percolation and Ising quantities. 

Statistics are now gathered from the percolation clusters. One of the 
clusters should grow anomalously large as the simulation proceeds until it 
dominates the entire system. This cluster is identified as the nucleating 
droplet. Since the percolation connectedness length and the Ising correla- 
tion length are proportional to one another, the nucleating droplet should 
initially be a patch of sites in the percolation problem with a characteristic 
linear size equal to the connectedness length. 

Although the percolation mapping gives a procedure for isolating the 
nucleating droplet, the time at which it forms is still not well defined. For 
example, the droplet could have appeared as a small cluster many time 
steps before it clearly dominated the system. This necessitates the use of an 
arbitrary criterion to determine the time of formation. This choice should 
not affect the scaling properties of the droplet as long as it is consistently 
applied to every simulation. In this work the particular criterion used is to 
trace the nucleating droplet back to the first Monte Carlo step in which it 
was the largest cluster in the system. All of the nucleating droplet's proper- 
ties are measured at this time. This is roughly equivalent to the criterion 
used by Monette et al. (11) 

3. Q U A S I S T A T I C  S U S C E P T I B I L I T Y  M E A S U R E M E N T S  

First some of the properties of the metastable LRIM will be 
investigated at small values of the external field H where the metastable 
state has a long lifetime. The term "long lifetime" means that the simulation 
run lasts for at least 1500 Monte Carlo steps in the metastable state 
without decaying to equilibrium. Spinodal-assisted nucleation theory 
predicts that the lifetime is propertional to e +~ ~F where AF is the nuclea- 
tion barrier. The barrier is found to obey the following scaling law(6~: 

A F ~  Rd(Z/H) 3/2 - d / 4  (3.1) 

Here, d is the dimension of space (d-- 2 in the simulations). If/~ z/F>> 1, the 
lifetime of the metastable state should be many Monte Carlo steps. 
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The anomalous behavior of Eq.(3.1) above d = 6  is currently being 
investigated.('41 

When the metastable system has a long lifetime, one can measure 
averaged bulk properties. These properties are averaged only over meta- 
stable configurations. As long as this restriction is imposed, the system will 
obey Boltzmann statistics, treating the metastable state as a point of local 
equilibrium. One of these bulk properties which is of interest is the quasi- 
static susceptibility (Zq~). The quasistatic susceptibility is defined to be the 
averaged fluctuations in the magnetization while the system remains 
metastable: 

Zqs = N(<m 2 >ms - -  <rn 2 >ms) (3.2) 

Here N is the total number of spins in the system and m is the magnetiza- 
tion per spin. The brackets ( ' )ms  indicate an average over metastable 
configurations. It is necessary to distinguish the quasistatic susceptibility 
)~qs from the ordinary susceptibility Z (defined as the fluctuations over all 
configurations of the system). This makes )~ insensitive to the metastable 
state, since the equilibrium configurations have a much greater weight than 
the metastable ones. 

In the limit where the range of interaction R goes to infinity, the 
mean-field approximation becomes exact. (6) The limiting behavior of Zq~ as 
R ~ oe can be determined by numerically evaluating the partition function 
for an Ising model with N spins where all spins interact with one another. 
The system has a Hamiltonian identical to Eq. (1.1) in all respects except 
that now q =  N - 1 .  This is referred to as the Curie-Weiss model. ('5) The 
limiting behavior of this model as N--* cc is expected to be the same as that 
of the LRIM when R ~ or. The partition function for the Curie-Weiss 
model may be written as a sum over all possible values of the magnetiza- 
tion M: 

N! e + f l (JM2 § H M )  

Z =  ~M [ (N- -  M)/2-1 ! [ ( N +  M)/2]  l 
(3.3) 

Here constant factors have been left out since they do not affect ensemble- 
averaged quantities. The quasistatic susceptibility may be numerically 
evaluated from the partition function by considering values of M near the 
metastable state in accordance with Eq. (3.2) (it is found that )~q, is insen- 
sitive to the exact cutoff value of M). This has been done as a function of 
AH for N =  1 x 10 7. In Fig. 1, Zqs for the Curie-Weiss model as a function 
of AH is indicated by the dots. The left-hand portion of the curve is 
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Fig. 1. Quasistatic susceptibility versus AH. Dots are evaluated from the partition function 
of a Curie Weiss model. The LRIM data for R = 5 ,  7, 15, and 25 are indicated by squares, 
crosses, circles, and plusses, respectively. 

approaching a slope of - 1/2. This is the correct asymptotic behavior of )~qs 
as predicted by mean-field theory(i): 

Zqs " (AH) -7 (3.4) 

where the value of 7 is calculated to be 1/2. 
The results from the LRIM simulations are displayed in the same plot. 

The quasistatic susceptibility Zq~ is measured in accordance with Eq. (3.2). 
Each data point is measured from a simulation which lasted 1500 Monte 
Carlo steps per spin. For  each interaction range R, nucleation is never 
observed near the condensation point ( H =  0). When the system is deeply 
quenched at large values of H, nucleation occurs quickly enough to be 
easily observed in the simulations (usually within 40 Monte Carlo steps). 
The particular value of zlH where this transition occurs depends upon R, 
as is expected from Eq. (3.1). Systems with large interaction ranges are 
found to remain metastable closer to the spinodal than those with smaller 
R. The curves end where the system decayed to equilibrium before the 
simulations finished running. 

One can see from the plots the nature of the crossover in the 
metastable LRIM to mean-field behavior as R ~  c~. For  a given R, 
the data follow the Curie-Weiss curve quite closely to the point where 
nucleating droplets form before the simulation ends. This supports the 
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notion that the spinodal is driving fluctuations in the system, which leads 
to an increasing Zqs. In addition, it suggests that the data are accurate; i.e., 
1500 Monte Carlo steps gives an adequate sampling of the distribution of 
configurations for a good measurement of Zqs. It is apparent that if the 
range of interaction R were increased enough, the scaling form of Zq~ given 
by Eq. (3.2) would be observed. 

It is interesting to note that for small 3H, the data taken from LRIMs 
with large R have a slight upward twist which deviates from the 
Curie-Weiss plot. This behavior is thought to be due to the finite size of 
R because the values of AH at which it occurs depends upon R (all systems 
have the same size). In fact, this same effect can be seen in the numerical 
evaluation of the Curie-Weiss model with a finite number of spins if 3 H  
is small enough. 

The mean cluster size of the corresponding percolation problem will 
now be considered to illustrate the relation between the Ising and percola- 
tion problems. Since the mean cluster size is the second moment of the 
cluster distribution, it is analogous to the quasistatic susceptibility in the 
Ising system. The mean cluster size ( s )  is defined in the usual manner: 

( s )  = Z  2n, (3.5t 
s 

Here s is the mass of a cluster and n, is the number of clusters with mass 
s divided by the number of sites (i.e., the number of Ising spins parallel to 
the external field). The mean cluster size diverges at the critical value of the 
bond probability according to the scaling relation 

( s )  ~ (Ap)-'~ (3.6) 

In the limit R ~ o% the problem approaches mean-field percolation. 
Calculations show that yp--1. Using the relation between the Ising and 
percolation scaling, Eq. (2.5), gives 

( s )  ,,~ (AH) -~'/2 (3.7) 

so that a log-log plot of ( s )  versus AH is predicted to yield an asymptotic 
slope which is equal to - 1/2. Figure 2 is an example of this plot for several 
different values of R. Each data point was obtained from runs of 1500 
Monte Carlo steps per spin. The dashed line drawn in the plot has a slope 
of -1 /2 .  I t  appears that as the range of interaction increases, the mean 
cluster size plot is tending toward the line. 

The upward twists which were observed in the Zq~ data close to the 
point where nucleating droplets rapidly form are even more pronounced in 
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Fig. 2. Mean cluster size of percolation clusters versus AH for LRIM systems with several 
values of R. Data for R =  5, 7, 15, and 25 are indicated by squares, crosses, circles, and 
plusses. The dashed line has a slope -1 /2 ,  which is predicted by spinodal-assisted nucleation 
theory. 

the mean cluster size plot. Again, these deviations are probably due to the 
finite size of the interaction range, since their location in the plot depends 
upon R. 

4. PROPERTIES OF THE NUCLEATING DROPLET 

One of the most important results of spinodal-assisted nucleation is 
that the nucleating droplet has a different structure than that assumed in 
the classical theory. Instead of a compact object made up of the stable 
phase, the droplet that forms near the spinodal is predicted to be a diffuse 
patch of correlated spins with a linear size equal to the correlation length. 
As the system is quenched closer to the spinodal, the correlation length 
diverges and the density of the nucleating droplet approaches that of the 
metastable background. The correlation length ~ is found to scale with A H  
as (6) 

~ R ( A H ) - ~  (4.1) 

where v is calculated to be 1/4. 
This relation can be checked quantitatively in the following manner: 

First, A H  is lowered for a system with fixed R until a nucleation event is 
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observed within 20-40 Monte Carlo steps for roughly half of the runs. The 
values of AH are slightly smaller than those where the Zqs plots in Fig. 1 
end for each R. The nucleating droplet is identified using the percolation 
mapping described in Section 2. Then, the radius of gyration RG of the 
nucleating droplet is measured. This quantity is predicted by Eq. (4.1) 
to scale as the correlation length. The procedure used to identify the 
nucleating droplet is described in Section 2. 

In Fig. 3, the radius of gyration for the nucleating droplet divided by 
R is plotted against AH. Each data point is an average over 12 nucleation 
events. Assuming that the radius of gyration scales as ~, Eq. (4.1) gives 

R G / R ~  (AH) ~ (4.2) 

The asymptotic slope is close to the predicted value of - v  ( -1 /4 )  
indicated by the dashed line. 

The percolation mapping is defined so that the connectedness length 
is equal to the Ising correlation length. Since the nucleating droplet is iden- 
tified in the percolation problem as a cluster with linear size which scales 
as the connectedness length, it is expected to have a fractal structure. For 
large R, the exponents in the percolation problem approach mean-field 
values. The fractal dimension exponent d s is equal to 4 in mean-field 
percolation. The correct interpretation of this exponent for long-range 
bond percolation has been found in systems where the dimension of space 
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Fig, 3. Radius of gyration of nucleating droplets divided by R versus AH.  The dashed line 
has the predicted asymptotic slope, -1/4.  
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is less than four/12] The result is that d F describes the scaling between the 
mass of percolation clusters Mc and their normalized radius of gyration: 

M,. ~ (RG/R) + (4.3) 

On the other hand, the Hausdorff dimension of a given cluster du is found 
to be the dimension of space. The Hausdorff dimension of a cluster is 
defined to be how the mass scales with a running length l: 

M,-~ l d" (4.4) 

In the case of the nucleating droplet, Ra scales as the correlation 
length. The scaling form of the correlation length, Eq. (4.2), and Eq. (4.3) 
give the scaling relation for the mass of the nucleating droplet MND: 

M N D  ~ ( A H )  - vdi (4.5) 

Since v = 1/4 and df = 4, the exponent is predicted to be equal to - 1 .  In 
Fig. 4 we have plotted the mass of nucleating droplets averaged over 12 
simulations versus A H .  The points seem to approach the dashed line, which 
has a slope equal to - 1 .  
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5. CONCLUSION 

This work has shown that singular properties of the spinodal radically 
affect the quasistatic bulk quantities in the metastable state as well as the 
phenomenon of nucleation. Near the spinodal, classical nucleation theory 
breaks down and must be modified. The data presented here seem to be 
consistent with the predictions of spinodal-assisted nucleation theory. (6-9) 

The structure of nucleating droplets near the spinodal appears to be 
the same as that of clusters in random long-range bond percolation. The 
droplets have a mass which scales as ~4 and a radius of gyration which 
scales as the correlation length R6 ~ R(Ap) -1/2. These same scaling laws 
are obeyed by the LRBP clusters. 
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